文章簡(jiǎn)介
藻酸鹽是一種天然聚合物和可再生資源,具有較高附加值。它是由β-D-甘露糖醛酸殘基與其同分異構(gòu)體α-L-古羅糖醛酸殘基,通過α(1→4)糖苷鍵連接而成的線型嵌段共聚物,具有保水、增稠、生物相容性和凝膠形成的特性,這使其成為一種有許多潛在應(yīng)用價(jià)值的原材料。目前,工業(yè)獲取藻酸鹽主要是從大型海藻中提取。然而,從海藻中提取藻酸鹽的生產(chǎn)成本較高、且藻酸鹽成分易受季節(jié)變化的影響,并且從海藻中提取藻酸鹽還會(huì)產(chǎn)生大量生產(chǎn)廢水。研究人員嘗試通過純微生物培養(yǎng)方式,經(jīng)假單胞菌屬或固氮菌屬細(xì)菌來生物合成藻酸鹽,通過定向調(diào)控細(xì)菌產(chǎn)藻酸鹽,優(yōu)化培養(yǎng)條件,穩(wěn)定產(chǎn)膠能力,可以生物合成各種具有特定結(jié)構(gòu)性能的藻酸鹽,但是,該方法的缺點(diǎn)是需要投加大量有機(jī)營養(yǎng)物作為生產(chǎn)原料,使得生產(chǎn)成本大幅提高。研究發(fā)現(xiàn),污水處理過程中形成的好氧顆粒污泥(AGS)中藻酸鹽含量最高可達(dá)25%,因此,回收藻酸鹽成為污水資源化新興方向,具有巨大的應(yīng)用前景。
從污水中回收的藻酸鹽溶液的含水率高達(dá)99.8%,因此濃縮脫水成為從AGS回收藻酸鹽的主要瓶頸之一。傳統(tǒng)方法是通過添加乙醇、氯化鈣、無機(jī)酸和其他化學(xué)試劑以濃縮沉淀水中溶解的藻酸鹽,但是這種方法不僅消耗大量化學(xué)試劑,而且產(chǎn)生二次污染。然而,廣泛用于蛋白質(zhì)、多糖和核酸等生物聚合物的膜分離與濃縮方法可以有效避免這些缺點(diǎn)。通過膜分離與濃縮,藻酸鹽溶液的濃度增加且體積大幅減小,從而大大降低藻酸鹽回收過程的工藝規(guī)模和操作成本。膜污染是限制膜分離應(yīng)用的瓶頸,通常以污染物粘附、沉積、凝膠層形成而增加過濾阻抗。前期研究發(fā)現(xiàn),Ca2+作用下海藻酸鈉(SA)溶液的超濾水通量下降顯著、膜污染降低,主要是由于SA和Ca2+形成的海藻酸鈣(Ca-Alg)顯著小于SA的過濾阻抗。類似地,F(xiàn)e3+、Al3+等三價(jià)金屬離子作用亦可減輕膜污染。
藻酸鹽最突出的性質(zhì)是其具有結(jié)合二價(jià)和多價(jià)陽離子的能力,可以形成高價(jià)值的水凝膠。生物工程領(lǐng)域,藻酸鹽的高生物相容性已被廣泛用于醫(yī)學(xué),例如愈合傷口的止血材料和藥物輸送。組織工程領(lǐng)域,藻酸鈣通常用作3D生物打印的生物墨水。在藻酸鹽中添加金屬離子可以增強(qiáng)力學(xué)強(qiáng)度及相關(guān)性能,例如,在藻酸鹽/聚丙烯酰胺水凝膠中同時(shí)引入Ba2+和Fe3+作為交聯(lián)劑,可改善水凝膠的強(qiáng)度和剛度。增強(qiáng)型水凝膠藻酸鹽可用作酶固定載體、微膠囊和食品添加劑,其與金屬離子的交聯(lián)可以提高藻酸鹽的穩(wěn)定性和機(jī)械性能,可將其用作新型膜材料和包裝應(yīng)用的涂層材料。藻酸鐵凝膠可用作氧化降解偶氮染料的光催化劑?;谶@些應(yīng)用,利用金屬離子與藻酸鹽形成的復(fù)雜聚合物的特殊性能,從而為在超濾回收藻酸鹽過程中通過添加高價(jià)金屬離子緩解膜污染的技術(shù)策略提供了前提條件。
本研究系統(tǒng)地比較四種典型的金屬離子(Ca2+、Mg2+、Al3+和Fe3+)作用下藻酸鹽溶液的超濾膜分離特性,解析單一和組合金屬離子緩解膜污染的機(jī)制;同時(shí),從膜濃縮回收產(chǎn)物角度,討論藻酸鹽與多價(jià)金屬離子形成材料(濾餅)的含水率、光學(xué)和電子掃描顯微鏡照片、粒度分布、官能團(tuán)和表面化學(xué)組成等特征性能。本研究結(jié)果為從AGS中回收藻酸鹽的分離與濃縮以及特定藻酸鹽的研制提供了新思路,相關(guān)成果于2020年5月發(fā)表在《Chinese Journal of Chemical Engineering》,詳細(xì)內(nèi)容還可參考學(xué)術(shù)專著《污水中高分子物質(zhì)的回收》(化學(xué)工業(yè)出版社,2021.10)。
主要成果
高價(jià)金屬離子作用下的藻酸鹽超濾
三價(jià)離子降低膜污染效果優(yōu)于二價(jià)離子,減小過濾阻抗排序?yàn)镸g2+<Ca2+<Fe3+<Al3+(圖1)
過濾阻抗與pH、溶液中殘余SA濃度呈正相關(guān),而鹽濃度對(duì)過濾阻抗的影響可忽略(表1)
過濾阻抗減輕效果排序?yàn)镕e3+>Ca2++Fe3+>Ca2+>Mg2+,隨著金屬離子總電荷濃度(NCi,N為離子電荷數(shù),Ci為金屬離子濃度)的增加,NCi
表1高價(jià)金屬離子作用SA溶液后形成的懸濁液中溶解性的藻酸鹽濃度、游離的金屬離子濃度以及溶液的pH值。SA的初始濃度為1.0 g·L-1,金屬離子的初始濃度為1.0 mmol·L-1。
溶解性的藻酸鹽濃度和pH
隨NCi增加,在Ca2+或Fe3+作用下殘留的SA濃度顯著降低,然而NCi>5 mmol·L-1時(shí),Mg2+作用下殘留的SA濃度保持不變;NCi>5 mmol·L-1時(shí),一定NCi下殘留的SA濃度排序?yàn)镕e3+<Ca2++Fe3+<Ca2+<Mg2+(圖3)
由于Fe3+水解作用,SA溶液的pH值與Fe3+或Ca2++Fe3+的濃度呈負(fù)相關(guān)(圖4),而Ca2+或Mg2+時(shí)pH值恒定。
高價(jià)金屬離子作用下藻酸鹽的超濾濃縮過程中,溶解性的藻酸鹽濃度減小與pH降低是過濾阻抗降低的原因(圖1和表1)
Fe3+減小膜污染的機(jī)理
Fe3+作用可以顯著降低SA超濾中的過濾阻力,主要原因?yàn)閜H值降低(7.00→3.89)、游離SA濃度降低(1.0→0.481 g·L-1)以及形成的氫氧化鐵膠體(1 mmol·L-1Fe3+作用)(圖5)。
回收物的材料特性
金屬離子作用下形成的濾餅含水率顯著降低,回收物(濾餅)的典型顯微圖如圖6所示,觀察形成的不同微觀形貌的海藻酸鹽,為海藻酸鹽應(yīng)用于新型納米材料提供光學(xué)基礎(chǔ)。
由于金屬離子與SA作用形成更大的膠體,即金屬離子作用增大藻酸鹽中膠體和聚合物的粒度(圖7),這是過濾阻抗降低的主要原因。
由于Fe3+和Ca2+均與SA中羧基反應(yīng),回收物中羧酸的特征峰均消失(圖8(a~c));pH = 7時(shí)SA與Fe3+形成的懸浮液的FTIR光譜如圖8(d)所示,因Fe3+以氫氧化鐵的形式存在,羧酸的特征峰降低,故證實(shí)了pH = 7時(shí)氫氧化鐵與SA發(fā)生相互作用。
SA及其與金屬離子形成的各種材料中均可觀察到C 1s、O 1s、Na 1s、Ca 2p和Fe 2p的特征峰,高價(jià)金屬離子作用下Na+的含量減少(圖9),這是由于SA中Na+被置換,形成了藻酸鈣或藻酸鐵,故陽離子交換是SA與高價(jià)金屬離子的相互作用機(jī)理;由于鐵離子比鈣離子具有更多的SA結(jié)合位點(diǎn),故鐵離子作用下過濾阻抗降低顯著。
對(duì)比純SA形成的濾餅,高價(jià)金屬離子作用下SA溶液超濾形成的濾餅是多孔的,并且在膜表面附近顯示出剝離傾向;Fe3+作用下形成的濾餅明顯比Ca2+時(shí)濾餅疏松,且濾餅的孔隙率排序?yàn)镕e-SA>Ca+Fe-SA>Ca-SA>SA(圖10)。
結(jié)語
高價(jià)金屬離子可作為藻酸鹽膜污染的緩解策略,膜分離、濃縮、回收形成的藻酸鹽濾餅有望擴(kuò)展藻酸鹽的應(yīng)用范圍,引入高價(jià)金屬離子可能是開發(fā)新型藻酸鹽材料的潛在方法。過濾阻抗隨著金屬離子濃度的增加而顯著降低且濾餅的含水率明顯下降,過濾阻抗減輕的排序?yàn)镸g2+<Ca2+<Fe3+